UPLC-ESI-TOFMS-based metabolomics and gene expression dynamics inspector self-organizing metabolomic maps as tools for understanding the cellular response to ionizing radiation.
نویسندگان
چکیده
Global transcriptomic and proteomic profiling platforms have yielded important insights into the complex response to ionizing radiation (IR). Nonetheless, little is known about the ways in which small cellular metabolite concentrations change in response to IR. Here, a metabolomics approach using ultraperformance liquid chromatography coupled with electrospray time-of-flight mass spectrometry was used to profile, over time, the hydrophilic metabolome of TK6 cells exposed to IR doses ranging from 0.5 to 8.0 Gy. Multivariate data analysis of the positive ions revealed dose- and time-dependent clustering of the irradiated cells and identified certain constituents of the water-soluble metabolome as being significantly depleted as early as 1 h after IR. Tandem mass spectrometry was used to confirm metabolite identity. Many of the depleted metabolites are associated with oxidative stress and DNA repair pathways. Included are reduced glutathione, adenosine monophosphate, nicotinamide adenine dinucleotide, and spermine. Similar measurements were performed with a transformed fibroblast cell line, BJ, and it was found that a subset of the identified TK6 metabolites were effective in IR dose discrimination. The GEDI (Gene Expression Dynamics Inspector) algorithm, which is based on self-organizing maps, was used to visualize dynamic global changes in the TK6 metabolome that resulted from IR. It revealed dose-dependent clustering of ions sharing the same trends in concentration change across radiation doses. "Radiation metabolomics," the application of metabolomic analysis to the field of radiobiology, promises to increase our understanding of cellular responses to stressors such as radiation.
منابع مشابه
Cellular response to ionizing radiation: A microRNA story
MicroRNAs (miRNAs) represent a class of small non-coding RNA molecules that regulate gene expression at the post-transcriptional level. They play a crucial role in diverse cellular pathways. Ionizing radiation (IR) is one of the most important treatment protocols for patients that suffer from cancer and affects directly or indirectly cellular integration. Recently it has been discovered that mi...
متن کاملDevelopment of urinary biomarkers for internal exposure by cesium-137 using a metabolomics approach in mice.
Cesium-137 is a fission product of uranium and plutonium in nuclear reactors and is released in large quantities during nuclear explosions or detonation of an improvised device containing this isotope. This environmentally persistent radionuclide undergoes radioactive decay with the emission of beta particles as well as gamma radiation. Exposure to (137)Cs at high doses can cause acute radiatio...
متن کاملMetabolomic profiling of liver tissues of rat after acute administration of Vardenafil
Erectile dysfunction (ED) diseases have almost affected 100 million men all over the world. Orally administered phosphodiesterase 5 (PDE 5) inhibitors are the most used pharmaceutical formulations for the treatment of ED. In this study, it is aimed to investigate the metabolomics feature of orally administered vardenafil in rats. To carry out the experimental procedure eight male Wistar albino ...
متن کاملAssessment of adaptive response of gamma radiation in the operating room personnel exposed to anesthetic gases by measuring the expression of Ku 80, Ligase1 and P53 genes
Introduction: Staffs of operating room are continuously exposed to anesthetic gases and ionizing radiation. Adaptive response, as a defense mechanism, will occur when cells become exposed to a low dose of factors harming DNA that causes in the next exposures to higher doses o...
متن کاملAssessment of Adaptive Response of Gamma Radiation in the Operating Room Personnel Exposed to Anesthetic Gases by Measuring the Relative Gene Expression Changes Ku80, Ligase1 and P53
Background: Some operating room personnel are occupationally exposed to genotoxic agents such as anesthetic gases and ionizing radiation. Adaptive response, as a defense mechanism, will occur when cells become exposed to a low dose of factors harming DNA (priming dose), which in the subsequent exposure to higher dose of those factors (challenging dose), show more resistance and sensibility.. <b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 80 3 شماره
صفحات -
تاریخ انتشار 2008